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Utilization of exact solutions of three-dimensional nonstationary problems in elasticity 

for a series of layered media provides a method for the investigation of the singularities 

of wave propagation in the low frequency range. Recent investigations have dealt with 
plane, uniformly thick lamina whose bounding surfaces were either free or in contact 
with elastic or fluid media. As a result of these investigations it has been possible to 

substantiate and to correct known classical equations concerning the oscillation of thin 
plates p] arid to obtain the corresponding equations for laminated plates p]. Moreover, 
investigation of the exact solutions for an elastic layer bounded by fluids and for a plate 
on an elastic foundation permitted the study of low frequency wave propagation processes 

in these media [3 and 41. 
The problem below deals with the oscillations of a layer with nonplanar boundaries. 

It is concerned with wave propagation in a cylindrical shell bounded on the outside by 
an elastic medium and filled with a fluid. Thus problem is of interest, in particular, in 
connection with the study of seismic waves in the neighborhood of bore holes and in ttie 

isolation of wave interference resulting from the presence of bore holes. 

1. Consider a cylindrical coordinate system 7. 8 , z with a given elastic cylindrical 

layer 1 (r, < r < r2 ) surrounded by an elastic medium 2 (r > r2) and a fluid cylinder 

0 (r < rl ) . All media are assumed to be homogeneous and isotropic, with the t th 

medium (t = 0 , 1, 2) having a density pi and propagation velocities U,i , U,i for 
longitudinal and transverse waves, respectively (V, 0 = 0). The displacement vector in 
the elastic media satisfies the Lam&equation, while in the fluid it is given by the linear 

equations of hydroacoustics. 
On the boundary of the elastic media, the contact conditions are of two types : (1) rigid 

contact, whereupon the normal and tangential displacements and stresses are continuous ; 
(2) nonrigid contact, whereupon only the normal stresses and displacements are continous, 

while the shearing stresses vanish. For the elastic-fluid boundary r = ?“I , the normal dis- 
placements are continuous while the difference in normal stresses and the tangential stress 
are equal to external loads which define the source. The latter, which takes effect at 

8 = 0, is applied to the surface r= rl and is axisymmetric. 
The problem of determining the displacement field consists of solving the equations 

of Lam; and of linear hydroacoustics with zero initial conditions and with boundary con- 
ditions represented by sources, subject to compatibility requirements on the boundaries 

?” = rl and r = rz , respectively. The solution to this problem, is obtained with the aid 
of Fourier and Laplace integral transforms. The components of the displacement vector, 

uri(ti,z,r) and&i(fi,a,r) WeI= 0) in the tth medium are given by 
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where Uri (k, ‘% r) and uzt (k, q, r) are linear combinations of cylindrical functions 

of order zero and one. 
The coefficients of this linear combination are obtained from a system of seven alge- 

braic equations based on the boundary conditions. Since the expressions for UT (k, q, r) 

and U, (k, q, r) are extremely cumbersome, they will not be written here. 

2. Before investigating the resultant displacement fields it is necessary to evaluate 
the inside integrals. For this purpose, a study was made of the singularities of the integ- 

rands in the q plane. These functions have an essential singularity at ‘?J = 03 , branch 

points at k&-1 and f i&-’ (ya = US, uPa -1, ha = VS~V~~-~) and poles in the left half- 

plane and on the imaginary axis. The location of these poles coincides with the roots 

of Eq. A WI, kr,, rl) = 6 (2.1). 

where n is the determinant of the above mentioned system of aigebraic equations. 
Since the roots are symmetrically located with respect to the real axis, it is only neces- 

sary to study the roots in the upper half-plane. 

In investigating (2.1) it is convenient to begin with an examination of the region 

kr,< i (2.2) 

wnere. for infinite 7, the cylindrical functions found in A may be replaced by the first 
terms of their series expansions. The roots of (2.1) under conditions (2.2) are either 

located at a finite distance from the origin or given by formulas of the form 
n = 0 [ (kr, - kr$‘]. 

In view of this, we will divide the solutions to (2.1) into two classes. 

To find the roots of the first class (located at a finite distance) in region (2.2), we 
may write the following approximate Eqs. : 

(JqS +.arJ”)(l - y1” + ay,‘) + z (1 - a)bvy,~ - a2 + IeQ) = 0 (2.3) 
(A + ocQ)(pll” + CQ) + x (1 - a)(prl%ra - A&,‘) = 0 (2.4) 

corresponding to the case of rigid and nonrigid contact, respectively. The following 

notation has been introduced in (2.3) and (2.4) : 

P = PoP1-1, Q= w1-1, To= v81vpo-19 
- -1 

r1= z',l"sl 

PI = PIVslZ, b = PW& x = rpra-a, a$ = 1 + @rf (2.5) 
a12 = i + -rl?Ia, A = 3 - 472 + ?a (1 - -1~2) 

Simple analysis of (2.3) and (2.4) shows that the first equation is linear in qla while 
the second is quadratic. Tine roots of both equations lie on the imaginary axis and move 
monotonously with increasing X . The boundary points for the location of these roots 
are obtained from (2.3) and (2.4) by setting X= 0 and X= 1 . Investigations show that 

for real media (for which Sup0 < VP1, u - 0.1, p - 0.1) the intervals for the roots of 
(2.4) are 

i V3 - 4T12 + ’ 
1/i - T12 + aw ’ 

i2 )/I-_ (2.6) 
I 

T’ne root for (2.3), for real media, lies in the first interval in (2.6) and near the root of 
(2.4) having the smaller modulus. 

We now turn to an examination of the movement of roots of (2.1) as krl and kra 
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increase. To investigate the movement of the roots of the first class, it is necessary to 
include additional terms in the series expansions of the cylindrical functions. The char- 

acter of the movement of the roots is determined by the relation between the initial 

position Im{ To] of the root and 6;‘. If Im{q,> < 6,-l, then the root remains on 

the imaginary axis as kr, and kr, increase ; if the opposite is true, then the root lies 
in the left half-plane. 

3, After completing a qualitative investigation of the singularities of the integrands. 

the Mellin integral may be written as sum of residues and contour integrals enclosing 

the branch points + iySV1 and 5 i6,-‘. As a result, the displacement field is expressible 

as the sum of terms representing interference waves. The Fourier integral of the integ- 
rals along the branch cuts characterizes waves which propagate in all media along the 

Z-axis with constant velocities U, 2 and UPa , These waves are of no particular interest 

in the study of oscillations in connection with bore holes, The velocities of the remain- 

ing interference waves depend on the frequency . 

Waves with dispersion are represented by integrals of the type 
00 

where the functions W ( k) and CZ( k) are given by 

o(k) = hsl fm % u(k) = liv,l 1 ttc ?] / (3.2, 

with tl determining the position of the root in the r) plane . The function F(k, 7”) is 

easily found as a result of the explicit form of the solution and the functional dependence 
‘rj (k). In the variable of integration k in (3.1) is changed to W , then (3.1) is replaced 

where k (UJ) is the inverse ftiction of W (k) , and 

Ft (0, r) = F [k (o), r] k’ (a), fi (a) == a [k (o)] (3.4) 

For @ (UJ) E 0 ,(3.3) is a Fourier integral representing the superposition of undamped 

oscillations whose frequency spectrum lies in the interval [Wo , a) . The phase veloci- 

ties t,9 of these oscillations are given by 

2’ip = Vsl Ill1 q (3.5) 

If p (0) F 0, then (3.3) characterizes a group of exponentially decaying oscillations 

which propagate with the velocities given in (3.5). For 13 (N)$ a 1 , the spectrum is 
approx~ma~ly determined by FI (~1 , 7) and the oscillation frequencies lie in the inter- 

val [W. ,a). 
In accordance with (3.2), the quantity Wo in (3.3) is nonzero. only for integrals asso- 

ciated with roots of the first class. Analysis of (2.1) shows that in the case of roots of 

the second class o s 6 it (ra - r&l. Thus, if interest is confined to the low frequency 

range o<2’,I(r_1-~rl)-l (3.61 

one need only take into account those expressions in (3.3) which correspond to rootp of 
the first class. 

4. We will now study further the displacement field in the region (3,6), where, accord- 
ing to the results of the root investigation, either one or two waves may be observed. 
These waves have been observed in seismic experiments [S) and are known as water 
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waves and cylindrical waves. The velocity U1 of the cylindrical waves for W = 0 satis- 

fies the inequalities 
vgr- < 81< usl+ tv,t-= [;+$;‘;;r,)” ) rsl+ = “vSl l/i) (4.1) 

Investigation of the lower limit U, cshows that it increases, as 0 increases within the 

interval [0, 11, from the velocity of propagation in a rod usi f/(3 - 47,s)(i - yr’)-’ to 
the plate velocity Vd. The plate velocity and bar velocity generally differ little from 

each other, so that the velocity of cylindrical waves varies little as a function of U, the 
shear modulus or shell thickness. The cylindrical waves exist even in the absence of 

media 0 and 2. Hence, the cylindrical waves are related to the oscillations of the shell 
itself. If the shell is in rigid contact with the elastic medium, then this type of shell 
oscillation is suppressed. 

In contrast with the cylindrical waves, the water waves exist in the case of rigid con- 

tact as well. The velocity V2 of these waves for W = 0 lies within the interval - 

(4.2) 

for both types of contact, and, as numerical calculations show, it depends little on the 

type of contact. However, it varies appreciably with shell thickness. In seismic experi- 

ments by Riggs [S], the introduction into the bore hole of even a thin shell (FIT;= 0.97) 

increased the velocity of the water waves by 49%. This increase in velocity is confirmed 
by numerical calculations based on (2.3), (2.4) and (3.5). 

Water waves and cylindrical waves can propagate along the Z-axis with or without 

attenuation, The propagation characteristics are related to the location of the roots in 
the ‘?J plane and are determined by the relation between the velocity V,, and the velo- 
cities of the water waves and cylindrical waves. The conditions for propagation without 
exponential decay are : 791 <V,, and V, <V,, for the cylindrical waves and water waves 
respectively. Under these conditions, the waves in the elastic medium are attenuated 

exponentially with an increase in the distance from the shell. If the opposite relations 

ate satisfied, then the water waves are dilatational and propagate in all directions. The 

spectral dependence of the displacements, as in the case of uniformly thick plane layers 

[3 and 43, displays maximums which shift toward the lower frequencies with an increase 
in time. 

In.conclusion. we note that the methods employed here permit also the study of low 
frequency oscillations for shell problems for which exact solutions may be constructed. 
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